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Abstract. We model a single-supplier, 73-store supply chain as a dynamic discrete choice
problem. We estimate the model with transaction-level data, spanning 3,251 products and
1,370 days.We find two interrelated phenomena: the bullwhip effect and ration gaming. To
establish the bullwhip effect, we show that shipments from suppliers are more variable
than sales to customers. To establish ration gaming, we show that upstream scarcity
triggers inventory runs, with stores simultaneously scrambling to amass private stocks in
anticipation of impending shortages. These inventory runs increase our bullwhipmeasures
by between 6% and 19%, which corroborates the long-standing hypothesis that ration
gaming causes the bullwhip effect.

Funding: This work was supported by the National Natural Science Foundation of China [Grants
71371139, 71528007, 71532015, and 71771179].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2018.1774.

Keywords: bullwhip effect • ration gaming • (s, S) inventory policies • dynamic discrete choice • empirical supply chain management •
structural estimation

1. Introduction
Demand fluctuations amplify up a supply chain like
the crack of a whip. Lee et al. (1997a) called this
phenomenon the bullwhip effect, which they attributed
to (i) demand signal processing, (ii) order batching,
(iii) cost shock fluctuations, and (iv) ration gaming.
Ration gaming is the only one of these four bullwhip
drivers without empirical evidence. Empiricists have
established the amplification properties of demand
signal processing (Metzler 1941, Lovell 1961, Kahn
1987), order batching (Blinder et al. 1981, Blinder and
Maccini 1991), and cost shock fluctuations (Maccini
and Rossana 1984, Miron and Zeldes 1988, Eichenbaum
1989). However, no empirical study has shown that
ration gaming increases supply chain variability. In fact,
no empirical study has shown that ration gaming even
exists.

We present the first hard evidence of ration gaming.1

The phenomenon manifests as inventory runs, the
supply chain analog of bank runs. The context is
a Chinese grocery supply chain that spans one up-
stream distribution center (DC) and 73 downstream
stores. If the stores were self-sacrificing, they would
curtail their orders when the DC’s inventory runs
low, scrimping for those in need. However, they are
self-serving, and therefore, they accelerate their or-
ders, stockpiling inventory to hedge against a po-
tential upstream stock out. We estimate that these

inventory runs account for about one-tenth of the
bullwhip effect.

2. Stylized Ration Gaming Model
2.1. Positioning
Lee et al. (1997a) theorize that stores may game the
means by which inventory is rationed. In addition to
competing for customer demand, retailers must com-
pete for vendor supply. Thus, stores will jockey for stock
in times of scarcity—they will request excess inventory
when they anticipate curtailed shipments, hoping to
endupwith the desired amount of product. These inflated
orders amplify supply chain volatility, exacerbating the
bullwhip effect.
Cachon and Lariviere (1999) show that a supplier can

obviate this subterfuge by adopting a lexicographic
allocation rule, ranking the stores and fulfilling their
orders sequentially. This policy is truth inducing,
because overordering under lexicographic allocation
only earns a store inventory that it does not want. The
DC that we observe follows a lexicographic allocation
rule and thus, is immune to the “strategic manipulation”
of Lee et al. (1997a) and Cachon and Lariviere (1999).2

However, the DC suffers another supply chain
malady: inventory runs. The truth-inducing lexico-
graphic allocation rule does not prevent inventory
runs, because the impulse to hoard is not a lie—the
stores are submitting inflated orders, because they
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want inflated shipments. These inventory runs rep-
resent a new version of ration gaming. The ration
gaming of Lee et al. (1997a) pertains to an order’s size;
our ration gaming pertains to an order’s timing. The
ration gaming of Lee et al. (1997a) pertains to deceit (a
store ordering two weeks’worth of supply in hopes of
receiving one week’s worth); our ration gaming per-
tains to hoarding (a store ordering two weeks’ worth
of supply in anticipation of next week’s bare shelves).

2.2. Analysis
N stores sell a single product. The product is in demand
until stopping time T, after which it becomes obsolete.
The obsolescence time is exponentially distributedwith
mean τ. The stores observe τ but not T—they cannot
anticipate when the product will go out of fashion.
Although the product is in demand, customer arrivals
follow independent Poisson processes, with arrival
intensity α. Each customer demands one unit of in-
ventory. The stores incur inventory underage cost µ for
each unit of unfulfilled demand and inventory overage
cost η for each unit of obsolete stock held at time T.

The stores order inventory from a common upstream
DC. At time zero, there is one unit of inventory at each
store, and there are u0 units at the DC. The DC does not
receive additional supply, and therefore, the average
store can sell at most u0/N + 1 products. There is no
shipping lead time from the DC to the stores, and the
DC fulfills the orders that it can, promptly and in full.
However, if the sum of orders in a given instant
exceeds upstream supply, the DC dispenses stock
according to a lexicographic allocation rule, fulfilling
orders to the fullest extent possible in a random se-
quential manner. Each store observes its own in-
ventories and the DC’s inventories but not the other
stores’ inventories.

The following proposition characterizes a symmetric
equilibrium with inventory runs that instantaneously
liquidate upstream supply (proofs are shown in the
online appendix).

Proposition 1. If η
η+µ≤

(
ατ

1+ατ
)2, then there exists M∈N,

such that, for all N ≥M, there is a Nash equilibrium in which
each store orders its inventory up to ρ(u) when the DC has
inventory u, where

ρ(u) � 1 if u>N(ω − 1)
ω otherwise

{
,

and ω � floor
ln

(
η

µ+η
)

ln

(
ατ

1+ατ
)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠≥ 2.

The DC inventory level falls steadily with demand
until it reaches threshold N(ω − 1), at which point it
vanishes as each store simultaneously cashes out ω − 1

units.3 This coordinated raid on upstream supply is an
inventory run.
The following propositions establish that inventory

runs occur with positive probability and are costly.

Proposition 2. Under Proposition 1’s equilibrium, the proba-

bility of an inventory run is min
(
1,
(

Nατ
1+Nατ

)u0−Nω
)
> 0.

Proposition 3. An inventory run increases each store’s ex-

pected costs by at least ηω − η(1 + ατ) 1 − ατ
1+ατ
( )ω( )

> 0.
Inventory runs are inefficient, because they sacrifice

the flexibility of pooled inventory and move stock
downstream, where it is more costly to store.

2.3. Empirical Framing
Our model indicates that storing inventory in the DC
is like storing money in the bank: it is only viable
when the institution is solvent. Stores withdraw
their inventory when the DC’s liabilities—its ex-
pected future orders—exceed its assets—its on-hand
supply. However, the inventory runs in our sample
are less extreme than our bang-bang equilibrium
implies, and henceforth, we more permissively de-
fine an inventory run as any increase in the rate of
downstream orders in response to low upstream
inventories.

3. Empirical Setting
3.1. Overview
We study the sixth largest supermarket chain in China,
with revenues of $4.53, $4.75, and $4.55 billion in 2012,
2013, and 2014, respectively. By the end of 2014, it had
1,719 convenience stores, 2,415 supermarkets, and 157
“hypermarkets” (combination department stores and
grocery stores). We focus on the hypermarkets, because
the retailer operates them, whereas it franchises the
smaller stores. Specifically, we study the 73 hyper-
markets fulfilled by the Shanghai DC. The stores are
located in Shanghai, Anhui, and Jiangsu.

3.2. Personnel
Each store has one manager who operates with au-
tonomy. Most have bachelor’s degrees and multiple
years of experience at the company. Each manager
receives a base salary and a performance bonus, which
depends on the store’s (i) total sales, (ii) company brand
product sales, (iii) gross profits, (iv) net profits, (v)
operating costs, (vi) price discounts, (vii) stock outs,
and (viii) shrinkage.
Each store manager oversees a team of around 15

directors. Each director manages the inventories of one
or two product categories. Most of the directors also
have bachelor’s degrees and several years of retail
experience. Each director receives a base salary and
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a performance bonus, which depends on the product
category’s (i) total sales, (ii) gross profits, (iii) net profits,
and (iv) stock-out rate.

A vice president of the company manages the DC.
Beneath him are five executives who oversee (i) an
information department, (ii) a logistics department,
(iii) a convenience store department, (iv) a supermarket
department, and (v) a hypermarket department. The
hypermarket department head supervises a team of
directors who manage the distribution of specific
product categories to our stores. Each director receives
a base salary and a performance bonus, which depends
on (i) the fill rate of orders sent to the DC’s supplier,
(ii) the fill rate of orders received from the stores, (iii) the
inventory turnover rate, and (iv) the shrinkage rate.

3.3. Order Process
Every store orders inventory every day. The process
starts with the information technology (IT) system
(which was last upgraded in 2010 before our sample
was collected). Each morning, it generates a recom-
mended order quantity for each product. It derives
these order recommendations from 10 product-level
operational variables, such as the average sales over the
prior 35 days, the season, the ideal safety stock, and the
batch size (the DC inventory level is not among these 10
operational variables). The formula mapping these
operational variables to recommended orders is com-
plex and ad hoc.

Each store’s directors place their orders a few hours
later. They do so via a communal computer terminal
in the store’s back room. Each director logs on to the
computer and opens a spreadsheet that details by
product (i) the current inventory level at the store, (ii) the
current inventory level at the DC, (iii) the recent sales
rate, (iv) the current retail price, (v) the current pro-
motion level, and (vi) the recommended order quantity.
The director specifies the actual order quantity in the
table’s seventh column. This column is initially popu-
lated with the IT system’s recommended orders, but the
director fine-tunes it, manually adjusting around 10% of
orders.

3.4. Shipment Process
The DC directors check the stores’ orders once a day.
The directors also observe the stores’ inventories, prices,
and sales, but they generally ignore this information.
The directors allocate inventory lexicographically, ful-
filling orders in the sequence received.
After the DC directors decide what each store gets,

the DC pickers execute the fulfillment. The pickers
traverse the storage racks, filling their carts with in-
ventory to be shipped. The pickers attach to each
package a barcode sticker that specifies the intended
recipient store. When their carts are full, the pickers
offload their inventory to a conveyor belt, which reads
the barcodes and sorts the inventory into piles based on
the recipient stores’ geographic districts. Each pile of
inventory is loaded onto a truck that delivers to each
store in a geographic district.
A team of backroom receivers greets a truck when it

arrives at a store. First, the receivers find and unload
the packages intended for their store as specified by the
shipment manifest (the various stores’ inventories are
usually jumbled in the truck). Second, the receivers
scan each box’s barcode, logging its delivery. Third, the
computer prints out a transaction receipt, and the truck
driver and a store receiver inspect and sign it. Fourth,
the receivers unpack and floor-ready the merchandise.
Fifth, the receivers walk the inventory to the appro-
priate storage shelves. Thus, for each product that
they receive, the store receivers must (i) find it in the
truck, (ii) scan it into the computer, (iii) confirm that it
was recorded in the transaction receipt, (iv) unpack
and floor-ready it, and (v) transport it to the shelving
units. In our model, we call this incremental cost of
receiving an additional product a “shipping cost”
(Section 6.2).

4. Data
Our sample describes the logistics of 3,251 products
(store items) with daily frequency.4 Tables 1 and 2
provide summary statistics. From April 1, 2011 to De-
cember 31, 2014, we observe (i) sales, (ii) wholesale
prices, (iii) retail prices, (iv) price promotions, (v) start-

Table 1. Panel Dimensions

Stores Items Dates Stores × items Stores × dates Items × dates Stores × items × dates

Detergent 67 38 1,370 1,011 85,989 47,086 1,074,011
Drinks 64 27 1,370 681 80,557 32,514 691,056
Oil/vinegar 64 14 1,370 359 83,071 18,677 416,673
Oral care 46 10 1,370 175 57,871 12,756 187,855
Shampoo 64 16 1,370 378 82,390 20,687 435,268
Tissues 49 6 1,370 142 62,154 8,100 166,911
Toilet paper 67 12 1,370 505 87,561 16,059 620,435
Total 73 123 1,370 3,251 94,144 155,879 3,592,209

Notes. This table provides the count of distinct store, item, and date combinations by product category. Our sample comprises 3,251 products
and 3.6 million observations.
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of-day inventories at the store, (vi) start-of-day inven-
tories at the DC, (vii) store-to-DC orders, and (viii)
DC-to-store shipments.5 From our sales and store
inventory series, we create a limited demand series.
Specifically, we set demand equal to sales when the
store’s inventory is above its bottom decile, andwe treat
demand as unobserved otherwise. Thus, our demand
variable is only 90% populated: it takes missing values
when there is a credible risk of demand censoring caused
by inventory stock out.

Figure 1 illustrates the data of a representative
product: a five-pack of Guben brand 250 g whitening
laundry detergent sold in a Shanghai store. The figure
illustrates six prominent features of our sample.

1. The store orders in fixed lot sizes: the distinct
order quantities are 6, 12, 18, 24, and zero (i.e., no order).
Sample-wide, each product’s six most common order
quantities account for 99.3% of orders.

2. The store and DC inventories follow (st, St) policies
with unstable St and st: the span between the largest and
smallest reorder points is eight times the standard lot
size, and the span between the largest and smallest stock-
up-to levels is nine times the standard lot size. Sample-
wide, 58% of reorder point ranges and 74% of stock-up-to
level ranges exceed five times the standard lot size.

3. The shipping lead time is oneday: of the 99 shipments
to the store, 95 arrive the following day. Sample-wide,
95.2% of shipments arrive within one day.

4. The DC generally fulfills orders fully or not at all:
of the 104 nonzero orders placed, only two are partially
fulfilled, with s ∉ {0, q}. Sample-wide, only 1.2% of
orders are partially fulfilled.

5. Prices are stable: the retail and wholesale price
coefficients of variation are 0.013 and 0.028, respectively.
Sample-wide, the median retail and wholesale price
coefficients of variation are 0.076 and 0.036, respectively.

6. Sales are interdependent: there is a 22% correla-
tion between today’s sales and tomorrow’s sales.
Sample-wide, 97% of store items exhibit significantly
positive sales autocorrelation.

5. Reduced Form Results
5.1. Ration Gaming
Ration gaming has two aspects: rationing—the DC
curtailing shipments when its supply runs short—
and gaming—the stores selfishly manipulating the
inventory allocation scheme. Figure 2 depicts both
phenomena.
First, the DC rations inventory. It fulfills 95% of

orders when its inventory level is above the first decile
but only 36% when its inventory level is below the first
decile (overall, 13% of orders go unfulfilled). Addi-
tionally, a stint of rationing can last awhile: if we define
a “rationing spell” as a span of timewhen the estimated
order fulfillment probability is less than one-half, then
50% of rationing spells last at least 5 days, 10% last at
least 14 days, and 1% last at least 35 days. Sample-wide,
these rationing spells make up 10% of our sample and
account for 74% of unfulfilled orders. Moreover, these
rationing spells are predictable, because the DC inventory
declines at a steady pace (Figure 1). For example, with
just an intercept and today’s DC inventory level, we
can predict tomorrow’s DC inventory level (excluding
inbound shipments) with a median R2 of 0.96.

Table 2. Variable Overview

Inventory Order Inbound Outbound Price

Mean Median Mean Median Mean Median Mean Median Mean Median

Stores
Detergent 74.8 28.0 46.3 20.0 46.4 18.0 5.3 2.0 16.4 12.8
Drinks 312.0 45.0 92.3 24.0 89.8 24.0 10.0 3.0 12.5 7.9
Oil/vinegar 44.7 28.0 30.9 20.0 29.9 20.0 3.6 2.0 3.8 2.9
Oral care 97.4 54.0 87.2 54.0 88.5 54.0 6.0 4.0 6.1 6.4
Shampoo 40.9 24.0 24.4 12.0 24.5 12.0 2.9 2.0 30.3 15.9
Tissues 26.1 18.0 20.1 12.0 19.7 12.0 2.4 2.0 15.6 12.6
Toilet paper 180.4 47.0 61.1 24.0 58.6 24.0 9.3 4.0 7.2 6.3

DC
Detergent 1,765.6 740.0 1,309.8 480.0 1,408.9 560.0 172.0 66.0 16.1 11.3
Drinks 2,770.1 1,148.0 3,098.2 900.0 3,346.0 900.0 232.0 96.0 11.3 7.1
Oil/vinegar 1,390.8 810.0 1,112.2 520.0 1,014.1 480.0 131.1 90.0 3.2 2.5
Oral care 2,963.1 1,920.0 2,804.0 1,440.0 2,819.7 1,440.0 247.8 144.0 5.4 5.9
Shampoo 1,451.6 840.0 1,294.0 900.0 1,306.0 780.0 127.8 72.0 29.4 13.8
Tissues 629.4 496.0 590.1 474.0 534.5 360.0 57.8 45.0 11.8 9.3
Toilet paper 5,639.5 3,598.0 4,268.8 2,400.0 5,556.2 3,000.0 450.3 200.0 6.2 5.1

Notes. This table reports themeans andmedians of five store variables and five DC variablesmeasuredwith daily frequency at the product level.
It expresses the price variables in Chinese renminbi and the remaining variables in physical units. The inventory variables correspond to start-of-
day stock levels. The order variables correspond to the nonzero store-to-DC and DC-to-vendor orders. The inbound variables correspond to the
nonzero DC-to-store and vendor-to-DC shipments. The outbound variables correspond to the nonzero sales and aggregate DC-to-store
shipments. Additionally, the price variables correspond to the retail and wholesale prices net promotions.
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Second, the stores game the inventory rationing
scheme. They have a 9.6% probability of ordering in-
ventory when the DC inventory is above the first decile

and a 12.8% probability of ordering inventorywhen the
DC inventory is below the first decile (an increase
of (12.8% − 9.6%)/9.6% � 31%). This phenomenon is

Figure 1. Raw Data of Representative Product

Notes. These scatter plots depict the raw data of a representative product: a five-pack of 250 g Guben brand whitening laundry detergent sold in
a Shanghai store. The graphs denote the price variables in Chinese renminbi and the remaining variables in physical units. They depict the time
series with daily frequency. The 2012 orders and shipments data were lost.
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broad: 60 of the 61 stores that have at least 10,000
observations in our sample order more frequently
when the DC inventory is in its lowest decile.

We establish the statistical significance of this result
with 16 ordinary least squares (OLS) regressions. Each
regression’s dependent variable is a dummy that in-
dicates whether a given store ordered a given item on
a given day.6 Each regression’s primary independent
variables are nine dummies that indicate the decile of
the DC inventory level (we reserve the lowest in-
ventory decile as our reference value). Additionally,
each regression’s control variables are an intercept, the
store’s current inventory level, and one of the 24 � 16
combinations of the following four sets of variables.

1. Fixed effects: 72 store dummies, 122 item dummies,
and 31 month dummies.

2. Sales: today’s sales of the given item at the given
store, the given item across all stores, and the given
store across all items plus the average of these three
variables across the prior week.

3. Price: the retail price, wholesale price, and dis-
count rate of the given item at the given store plus the
average of these three variables across the prior week.

4. Future: the average of the six contemporaneous
sales and price variables across the subsequent week.

The future variables are proxies for their forecasted
values. A potential source of endogeneity, next week’s
sales projection, will influence both the DC’s inventory
level and the store’s order propensity. Incorporating
the future (and past) sales should control for the var-
iation in DC inventories caused by the variation in
demand (and its expectation).
Table 3 reports the DC inventory coefficient esti-

mates. The figures represent the store order probabil-
ities when the DC inventory is in the nine highest
deciles minus the store order probabilities when the DC
inventory is in the lowest decile. All nine estimates
across all 16 specifications are significantly negative:
order probabilities are significantly higher when the
DC inventory level is in the bottom decile.
In Table 4, we correlate the stores’ gaming with the

DC’s rationing. We divide our sample into four equal
subsamples based on the degree of inventory rationing.
We control for the product category, and therefore,
each subsample has roughly the same mix of items (e.g.,
each has four shampoo items and three toilet paper
items). We then run Table 3’s final regression—the one
withoutfixed effects or the sales, price, and future control
variables—across each subsample. We find that gam-
ing worsens when rationing worsens. In fact, Table 4’s

Figure 2. Signatures of Rationing and Gaming

Notes. These line plots depict the degree of rationing and gaming by product category. The rationing plot graphs the order fulfillment probability
(the fraction of orders that the DC fulfills) as a function of the DC inventory level. Additionally, the gaming plot graphs the order placement probability
(the fraction of observations with a positive order quantity) as a function of the DC inventory level. Wemeasure DC inventories in percentages with the
empirical cumulative distribution. The probability of theDC fulfilling an order is lowerwhen theDC inventory level is in the lowest decile,which implies
rationing. In contrast, the probability of the store placing an order is higher when the DC inventory level is in the lowest decile, which implies gaming.
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columns are perfectly ordered: the degree of gaming
moves in lockstep with the degree of rationing.

To corroborate these empirical results, we interview
the managers of two Shanghai stores. Store 1 is in
a famous mall in Puxi, and Store 2 is at the intersection
of two busy subway lines in Pudong. Store 1 is the
67th-largest store in our sample, and Store 2 is the 39th
largest. We interviewed Store 1’s manager by phone on
August 26, 2017, and September 1, 2017, and Store 2’s
manager in person on October 15, 2017. Both managers
admitted that their directors place orders in response to
low DC inventory levels. They were forthcoming about
their directors’ strategic stockpiling, because they did
not view it as antisocial. Instead, they considered as-
surance of supply a critical aspect of the job; according

to them, not monitoring upstream availability would be
negligent. Both managers speculated that the other
stores also time orders to avoid upstream stock outs, and
neither manager could think of another reason for order
quantities to correlate with DC inventory levels after
conditioning on demand.

5.2. Bullwhip Effect
In addition to ration gaming, our supply chain exhibits
the bullwhip effect. Following Cachon et al. (2007),
Bray and Mendelson (2012), Chen and Lee (2012), and
Bray and Mendelson (2015), we measure the “material
flow”bullwhip effectwith the SDofDC-to-store shipments
divided by the SD of sales, and we measure the “infor-
mation flow” bullwhip effect with the SD of store-to-DC

Table 3. Gaming Regression Estimates

D2 D3 D4 D5 D6 D7 D8 D9 D10

F.E.
Sales

Price
Future −3.21 (0.23) −3.59 (0.18) −3.66 (0.23) −3.33 (0.18) −3.04 (0.18) −2.96 (0.18) −2.90 (0.20) −2.82 (0.21) −2.61 (0.26)
No future −3.54 (0.22) −3.92 (0.24) −4.07 (0.22) −3.69 (0.19) −3.44 (0.24) −3.29 (0.22) −3.24 (0.23) −3.11 (0.20) −2.81 (0.24)

No price
Future −3.22 (0.16) −3.59 (0.17) −3.67 (0.18) −3.34 (0.20) −3.05 (0.22) −2.97 (0.18) −2.90 (0.21) −2.82 (0.25) −2.62 (0.19)
No future −3.66 (0.19) −3.98 (0.21) −4.09 (0.22) −3.69 (0.22) −3.37 (0.21) −3.23 (0.23) −3.19 (0.22) −3.00 (0.22) −2.71 (0.23)

No sales
Price
Future −3.23 (0.19) −3.64 (0.20) −3.72 (0.22) −3.36 (0.26) −3.11 (0.23) −3.00 (0.23) −2.96 (0.20) −2.86 (0.18) −2.67 (0.24)
No future −3.21 (0.14) −3.64 (0.12) −3.70 (0.13) −3.49 (0.14) −3.23 (0.12) −3.01 (0.15) −2.94 (0.13) −2.98 (0.16) −2.57 (0.15)

No price
Future −3.06 (0.16) −3.49 (0.21) −3.62 (0.14) −3.24 (0.18) −3.00 (0.19) −2.85 (0.19) −2.85 (0.22) −2.67 (0.19) −2.48 (0.18)
No future −3.21 (0.12) −3.58 (0.13) −3.60 (0.13) −3.35 (0.13) −3.05 (0.12) −2.78 (0.12) −2.72 (0.13) −2.74 (0.14) −2.28 (0.17)

No F.E.
Sales

Price
Future −3.24 (0.20) −3.56 (0.26) −3.55 (0.20) −3.18 (0.23) −3.01 (0.21) −2.96 (0.24) −2.93 (0.26) −2.86 (0.24) −2.72 (0.29)
No future −3.57 (0.20) −3.87 (0.20) −3.95 (0.20) −3.52 (0.20) −3.44 (0.24) −3.27 (0.23) −3.26 (0.23) −3.14 (0.23) −2.91 (0.28)

No price
Future −3.26 (0.20) −3.57 (0.16) −3.57 (0.18) −3.20 (0.19) −3.01 (0.18) −2.96 (0.18) −2.94 (0.21) −2.86 (0.20) −2.73 (0.18)
No future −3.68 (0.22) −3.92 (0.19) −3.98 (0.25) −3.52 (0.19) −3.38 (0.27) −3.22 (0.26) −3.24 (0.21) −3.03 (0.28) −2.81 (0.27)

No sales
Price
Future −3.29 (0.20) −3.64 (0.22) −3.65 (0.22) −3.26 (0.21) −3.12 (0.21) −3.03 (0.22) −3.03 (0.18) −2.93 (0.21) −2.84 (0.26)
No future −3.38 (0.12) −3.83 (0.11) −3.89 (0.13) −3.66 (0.11) −3.44 (0.15) −3.17 (0.12) −3.07 (0.14) −3.08 (0.15) −2.64 (0.14)

No price
Future −3.07 (0.22) −3.39 (0.19) −3.50 (0.22) −3.01 (0.17) −2.88 (0.22) −2.74 (0.19) −2.76 (0.24) −2.63 (0.22) −2.43 (0.18)
No future −3.35 (0.14) −3.72 (0.13) −3.76 (0.14) −3.49 (0.12) −3.23 (0.12) −2.93 (0.13) −2.85 (0.14) −2.84 (0.17) −2.33 (0.16)

Notes. This table presents the coefficient estimates of 16 OLS regressions. For each, the dependent variable is a dummy that indicates whether
a given store ordered a given item on a givenday, and the primary independent variables are nine dummies that indicate theDC’s inventory decile
of the given item on the given day (the lowest inventory decile does not have a dummy, because it serves as the benchmark). Columns D2–D10
report the coefficient estimates of the second through 10th inventory decile dummies. These estimates report the probability of a store placing an
order when the DC’s inventory is in the second through 10th decile minus the probability of the store placing an order when the DC’s inventory is
in the first decile. For example, the top left estimate suggests that stores are, on average, 3.21% less likely to orderwhen the DC’s inventory is in the
second lowest decile thanwhen theDC’s inventory is in the lowest decile. Thedifferent rows correspond to different regression specifications. Each
includes an intercept and the store’s inventory level as control variables. Additionally, the “F.E.” regressions include store, item, and month fixed
effects. The “Sales” regressions include the sales of the given item at the given store, the sales of the given item across all stores, the sales at the given
store across all items, and the average of these variables over the previous week. The “Price” regressions include the retail price, the wholesale
price, the discount level, and the average of these variables over the previous week. Additionally, the “Future” regressions include the following
week’s average retail price,wholesale price, discount level, sales of the given itemat the given store, sales of the given itemacross all stores, and sales
at the given store across all items.We calculate the standard errors (in parentheses) with the bootstrap, sampling byproduct cluster. Each estimate is
significantly negative, which indicates that order probabilities are significantly higher when the DC inventory level is in the lowest decile.
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orders divided by the SD of demand. A bullwhip is
present when these ratios exceed one. Figure 3 illustrates
a robust bullwhip effect: 97% of our material flow ratios
and 98%of our informationflow ratios exceed one.7At the
product level, the median shipment SD is 4.6 times the
median sales SD, and the median order quantity SD is 4.9
times the median demand SD.

Order batching accounts for most of this effect. For
example, Figure 4 illustrates that a strawberry milk-
shake’s three most common sales quantities are 1 (133
observations), 0 (131 observations), and 2 (111 observa-
tions), whereas its three most common shipment quan-
tities are 0 (509 observations), 9 (30 observations), and 45
(12 observations). Although material, however, order
batching’s contribution to the bullwhip effect is moot,
because it is unavoidable: there will always be order
batching as long as there are shipping costs.

More interesting is the bullwhip caused by ration
gaming, because that problem is solvable. To confirm the

hypothesis of Lee et al. (1997a) that ration gaming con-
tributes to the bullwhip effect, we calculate themagnitude
of the phenomenonwithout inventory runs. Additionally,
to perform this counterfactual analysis, we construct
a structural econometric model of the supply chain.

6. Structural Econometric Model
6.1. Positioning
Our empirical inventory model belongs to the (st,St)
class: its inventories exhibit the saw-toothed pattern
characteristic of (s, S) policies, but its reorder point and
order-up-to level vary dynamically. We create the
fourth microeconometric (st,St) inventory model,
building on those of Aguirregabiria (1999), Erdem et al.
(2003), and Hendel and Nevo (2006).8 We extend their
specifications in five ways.

1. Our model describes a two-tier supply chain,
whereas the other models describe a single stock of
inventory.

Table 4. Gaming Regression Estimates Moderated by Degree of Rationing

D2 D3 D4 D5 D6 D7 D8 D9 D10

Q1 −1.27 (0.15) −1.38 (0.15) −1.28 (0.13) −1.36 (0.15) −1.27 (0.14) −1.26 (0.16) −0.74 (0.17) −0.49 (0.17) −0.02 (0.18)
Q2 −2.15 (0.22) −2.43 (0.29) −2.28 (0.27) −2.09 (0.23) −2.17 (0.24) −1.92 (0.25) −1.68 (0.25) −1.93 (0.33) −0.92 (0.42)
Q3 −4.34 (0.40) −4.14 (0.37) −4.02 (0.34) −3.27 (0.30) −3.04 (0.32) −2.72 (0.31) −2.76 (0.33) −2.92 (0.38) −2.78 (0.42)
Q4 −5.71 (0.47) −6.91 (0.54) −7.34 (0.56) −7.15 (0.58) −6.22 (0.52) −5.53 (0.47) −5.89 (0.51) −5.76 (0.51) −4.96 (0.46)

Notes. This table presents the coefficient estimates of one regression model applied to four subsamples, Q1 to Q4. We create the subsamples by
dividing each product category's items into quartiles based on the degree of inventory rationing, where subsample Q1 comprises the least-
rationed items and subsample Q4 comprises the most-rationed items. We measure rationing with the fraction of orders that go unfulfilled. We
run Table 3's simplest regression specification—without fixed effects and without sales, price, or future control variables—across each subsample.
We calculate standard errors with the bootstrap, in the fashion of Table 3. More-negative estimates indicate more-extreme gaming, so the degree
of gaming decreases from subsample Q4 to subsample Q1. Thus, we find a positive association between rationing and gaming.

Figure 3. Bullwhip Effect Estimates

Notes. These scatter plots depict our bullwhip effect estimates both disaggregated by product and aggregated across stores by item. Thematerial
flow bullwhip is the SD of shipments divided by the SD of sales, and the information flow bullwhip is the SD of orders divided by the SD of
demand. Overall, 97% of these ratios exceed one, which indicates a strong bullwhip effect.
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2. Our estimator factors both reorder point st and
order-up-to level St, whereas the other estimators dis-
regard the latter. Erdem et al. (2003) and Hendel and
Nevo (2006) do not observe St, and Aguirregabiria
(1999) does not incorporate it in his likelihood function,
because doing so would make his statistical model de-
generate.Aguirregabiria (1999, p. 293) “exploit[s]moment
conditions associated with the optimal discrete choice
[of whether to order (i.e., st)], but not moment conditions
associated with the marginal conditions [of how much
to order (i.e., St − st)],” because his order quantity—a
continuous variable observed without error—is too in-
formative (theoretically, he could determine his model
primitives from a handful of order quantities). To avoid
this model degeneracy, we exploit order batching. Each
order in our data is an integer multiple of some standard
lot size. Thus,we do not observe ideal order-up-to level—
we observe ideal order-up-to level rounded to the nearest
batch. This rounding error prevents our empirical like-
lihood function from becoming overdetermined.

3. Our model incorporates the general Markov-
modulated demand process of Chen and Song (2001),
whereas the other models assume demand to be i.i.d.

4. We prove that our model is empirically identified,
but the other authors do not. In fact, Hendel and Nevo
(2006, p. 1653) concede that they “have no reason to
believe that costs and preferences are identified non-
parametrically or even that flexible functional forms can
be estimated,” and Erdem et al. (2003, pp. 52–53) explain
that their “model is too complex for [them] to provide
analytic results on identification” and find with simu-
lations that they “cannot separately identify” the linear
cost of holding inventory and the transport cost.

5. We describe our data with 246 dynamic programs,
whereas Erdemet al. (2003) use only four andAguirregabiria
(1999) and Hendel and Nevo (2006) use only one. We
further customize our model, because we have a richer
sample with more products (N) and time periods (T):

6.2. Overview
We now present our supply chain model. The supply
chain comprises a single DC and multiple stores. An
external vendor ships a nonperishable product to the
DC, the DC supplies the stores, and the stores satisfy
local demands. The stores compete with one another
for access to the DC’s inventory, hoarding stock when
they anticipate a shortage.
We frame our model from the perspective of a rep-

resentative store. The store faces newsvendor-style
inventory costs—unsatisfied demands are lost, and
unsold stocks are stored at a cost—and an economic
order quantity (EOQ)-style shipping cost—each in-
ventory delivery has a fixed fee.9 Comprising a Mar-
kov decision process, the store’s order quantity q∈q�
{q0, · · · ,qq̄} is a deterministic function of four state
variables: store inventory i∈ i� {0, · · · , ī}, DC inventory
u∈u� {0, · · · , ū}, demand statem∈m� {m0, · · · , mm̄}, and
shipping cost shock e� {e(q) |q∈q}∈R|q| . Variable m is
a sufficient statistic for the distribution of future de-
mands (Chen and Song 2001), and variable e is a vector
of i.i.d.mean-zero Gumbel random variables that shifts
the cost associated with each potential shipment size.
The store observes e, but we do not—it is our statistical
error term. However, we observe the other state vari-
ables, which we house in vector x� [i,u,m]′. Thus, the
observable portion of the state space is x� i×u×m.
Henceforth, tomorrow’s variables wear a prime symbol
(e.g., m′), and today’s stand bare (e.g., m).

6.3. Sequence of Events
Today’s events proceed as follows.

1. The day begins in demand state m ∈m, with
downstream inventory i∈ i at the store and upstream
inventory u ∈ u at the DC.

2. Shipping cost shifter e∈R|q| resolves indepen-
dent of the other model variables.

3. The store orders q units of inventory from the DC
in response to information set {x, e}. (Note that setting
q � 0 ∈q is equivalent to not placing an order.)

4. Demand d∈N resolves from probability mass
function (PMF) δd(d |m), and the store sells min(i, d)
units of inventory.

5. The store incurs newsvendor costµmax(d − i, 0)+
ηmax(i − d, 0).

6. Boolean b∈ {0, 1} resolves from PMF δb(b | u), and
the DC ships s � bq units to the store: the DC fulfills
orders fully or not at all.

Sample N T

The sample of Aguirregabiria (1999) 534 29
The sample of Hendel and Nevo (2006) 218 104
The sample of Erdem et al. (2003) 838 123
Our sample 3,251 1,370

Figure 4. Bullwhip Effect from Order Batching

Notes. This line plot illustrates the sales and shipments of a representative
product: a four-pack of 125mL Wangwang brand strawberry
milkshake sold in a store in Yancheng, Jiangsu. The SD of shipments
is 4.36 times that of sales, and therefore, the product exhibits the
bullwhip effect. However, most of this bullwhip stems from order
batching (e.g., the distinct sales quantities are {0, 1, 2, 3, 4, 5, 6}, and the
distinct shipment quantities are {0, 9, 18, 27, 45, 54}).
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7. The store incurs shipping cost λ1(s> 0) − e(s),
where λ is the average cost of receiving a shipment
and −e(s) is a shock to the cost of receiving a shipment
of size s.10

8. The store’s inventory transitions to i′� i−min(i,d)+
s; in other words, i′∈i resolves from PMF δi(i′|d,i,s)�
1(i′� i−min(i,d)+s).

9. The DC’s upstream inventory u′ ∈ u resolves
from PMF δu(u′|u, s).

10. Demand state variablem′ ∈m resolves from PMF
δm(m′|d,m).
6.4. Primitives
The following state transition function characterizes
the distribution of tomorrow’s observable state con-
ditional on today’s state and order quantity:

δ(x′|x, q) � ∑
b∈{0,1}

∑
d∈N

δb(b |u)δd(d |m)δi(i′ |d, i, bq)δu(u′| u, bq)
· δm(m′| d,m).

Additionally, the following cost function specifies to-
day’s expected cost conditional on today’s state and
order quantity:

φ(q|x, e) � π
(
q|i,m) − ε

(
q|e),

where π
(
q|x) � λδb(1|u)1 (q> 0)

+∑
d∈N

δd(d|m)(µmax(d − i, 0)
+ ηmax(i − d, 0))

and ε
(
q|e) � ∑

b∈{0,1}
δb(b|u)e(qb).

6.5. Value Function
The following equations characterize the store’s Bellman
equation (Aguirregabiria and Mira 2010, Arcidiacono
and Ellickson 2011):

ν(x) � E
(
min
q∈q φ(q | x, e) + β

∑
x′∈x

δ(x′ | x, q)ν(x′)
∣∣∣x)

� ∑
q∈q

ρ(q | x)(γ(q | x) − ξ(q | x)),
where γ(q | x) � π(q | x) + β

∑
x′∈x

δ(x′ | x, q)ν(x′),

ρ(q | x) � E
(
1
(
q � argmin

qj∈q
γ(qj | x) − ξ(qj | x))∣∣∣x)

� exp
( − γ(q | x)/δb(1 | u))∑

qj∈q exp
( − γ(qj | x)/δb(1 |u)),

and ξ(q | x) � E
(
ε(q|e)|x, q)

� −δb(1 | u) log(ρ(q | x)).

In the expressions above, ν characterizes the store’s
expected discounted costs conditional on the current
observable state, γ characterizes the store’s expected

discounted costs net the error term and conditional on the
current observable state and order quantity, ρ specifies the
probability of a given order quantity conditional on the
current observable state, ξ represents the expected error
term conditional on the current observable state and order
quantity, and β � 0.9997 is the daily discount factor.

6.6. Empirical Identification
Our identification argument is straightforward. First,
the stock-out rate identifies µ relative to η: the news-
vendor model suggests that the service level should be
around µ/(µ + η). Second, the magnitude of orders
identifies λ relative to η: the EOQ model suggests
that the average nonzero order should be around�������������
2E(d)λ/η√

. Third, our model’s predictive power iden-
tifies η relative to the SD of the error term (which is
normalized to one): McFadden’s R2 decreases with the
relative magnitude of the error term.
The following proposition formalizes these intuitions.

Proposition 4. If |q| ≥ 3, then cost parameters θ � {λ,µ, η}
are empirically identified from functions δ and ξ, which we
can estimate nonparametrically, and from scalar β, which we
take as given.

This identification argument does not extend to the
specifications ofAguirregabiria (1999), Erdemet al. (2003),
and Hendel and Nevo (2006), which treat order-up-to
level St as unobserved.

7. Estimation Procedure
7.1. Overview
We estimate our dynamic discrete choice model with
refinement by Bray (2018) of the nested pseudolikelihood
estimator of Aguirregabiria andMira (2002). We estimate
across each item separately, and therefore, we define our
estimator in terms of one representative item. We pool
across our 73 stores with the expectation–maximization
(EM) algorithmmethod of Arcidiacono andMiller (2011),
which specifies a finite mixture of store types.

7.2. State and Action Spaces
Beforewe candefine state spacex,wemustdefinedemand
state variable m. We set m to the product’s expected next
day demand, which we estimate with the fitted value of
product-level OLS regressions of next day demand on (i)
monthly dummyvariables, (ii) the sales of the given itemat
the given store, (iii) the sales of the given item across all
stores, (iv) the sales across all items at the given store, (v)
the listedwholesale price, (vi) the listed retail price, and (vii)
the posted price discount.
After calculatingm, we set state space x to a 20 · 15 · 10 �

3,000-element grid spanning 20 values of i, 15 values of u,
and 10 values of m. We round each state in our sample to
the nearest grid element. We set the grid’s breakpoints to
the variables’ empirical quantiles, and therefore, the data
are evenly dispersed.
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Next, we set action space q to the fivemost common
order quantities and the median value of the re-
maining orders. For example, the Colgate Protective
Toothbrush Family Pack has seven distinct order
quantities:

Therefore, for this item, we set q � {0, 24, 48, 72,
120, 240} and round the stray 744-unit order down
to 240. We round fewer than 1% of orders in this
fashion.

7.3. Unobserved Heterogeneity
We observe a given item in upward of 73 stores. We
pool these stores into k̄ latent classes.11 The stores in class
k ∈ k � {1, . . . , k̄} have cost parameters θk � {λk,µk, ηk}
and state transition function δk. We do not observe the
class assignments, and therefore, the structural parameters
have a finite mixture distribution from our perspective:
a priori, a given store has probability pk of belonging to
type k.

Theoretically, we could estimate primitives θ � {θk},
δ � {δk}, and p � {pk} with the following maximum
likelihood:

{θ̂, δ̂, p̂} � argmax
{θ,δ,p}

∑
n∈n

log
(∑
k∈k

∏
t∈t
pkρ(qnt | xnt,θk, δk)

· δk(xnt | xnt−1, qnt−1)
)
,

where n is the set of stores and t is the set of days.
However, this maximization problem is intractable,
and therefore, we translate it to a simpler form with
a technique developed by Arcidiacono and Jones (2003)
and Arcidiacono and Miller (2011).

1. We derive the following system of equations
from the optimization problem’s first-order conditions:

{θ̃, δ̃} � argmax
θ,δ

∑
n∈n

∑
t∈t

∑
k∈k

w̃nk(log(ρ(qnt | xnt,θk, δk))
+ log(δk(xnt | xnt−1, qnt−1)))

and p̃k�
∑
n∈n

w̃nk

|n|
,

where

w̃nk � ∏t∈tp̃kρ
(
qnt | xnt,θ̃k, δ̃k

)
δ̃k(xnt | xnt−1, qnt−1)∑

j∈k∏t∈tp̃jρ
(
qnt | xnt,θ̃j, δ̃j

)
δ̃j(xnt | xnt−1, qnt−1)

.

Note, w̃nk is the ex post probability of store n be-
longing to type k.

2. We extricate the maximization problem from the
fixed point by replacing structural estimates ρ(qnt | xnt,
θ̃k, δ̃k) and δ̃k(xnt | xnt−1, qnt−1) with reduced form ana-
logs ρ̆k(qnt | xnt) and δ̆k(xnt | xnt−1, qnt−1):
{θ̆, δ̆} � argmax

θ,δ

∑
n∈n

∑
t∈t

∑
k∈k

w̆nk(log(ρ(qnt | xnt,θk, δk))

+ log(δk(xnt | xnt−1, qnt−1))) ,

where w̆nk� ∏t∈t p̆kρ̆k(qnt | xnt)δ̆k(xnt | xnt−1, qnt−1)∑
j∈k∏t∈tp̆jρ̆j(qnt | xnt)δ̆j(xnt | xnt−1, qnt−1)

,

p̆k�
∑
n∈n

w̆nk

|n|
,

δ̆k(xnt | xnt−1, qnt−1)

�
∑

m∈n
∑

s∈t w̆mk1(xms � xnt⋂ xms−1 � xnt−1⋂ qms−1 � qnt−1)∑
n∈m

∑
s∈t w̆mk1 (xms−1 � xnt−1 ⋂ qms−1 � qnt−1) ,

and ρ̆k(qnt | xnt)�
∑

m∈n
∑

s∈t w̆mk1(xms � xnt ⋂ qms � qnt)∑
n∈m

∑
s∈t w̆mk1 (xms � xnt) .

3. We calculate w̆nk, p̆k, δ̆k, and ρ̆k by iterating their
respective equations. (This step is equivalent to the EM
algorithm.)

4. We split the remaining likelihood function into
2k̄ constituent parts in the fashion of (Rust 1994,
p. 3108)

δ̂ k
� argmax

δk

∑
n∈n

∑
t∈t

w̆nk log(δk(xnt | xnt−1, qnt−1))
and θ̂k � argmax

θk

∑
n∈n

∑
t∈t

w̆nk log
(
ρ
(
qnt | xnt,θk, δ̂k

))
.

We consider the former optimization problem in
Section 7.4 and the latter in Section 7.5.

7.4. State Transitions
Maximizing the log likelihood of the observed state
transitions under weights w̆nk yields

δ̂ k(x′ | x, q) �
∑

b∈{0,1}

∑
d∈N

δ̂bk(b | u)̂δdk(d |m)̂δik(i′ | d, i, bq)
· δ̂uk (u′ | u, bq)̂δmk (m′ | d,m),

where δ̂bk, δ̂dk , and δ̂ik return the fitted value of
w̆nk-weighted empirical frequency estimators, δ̂uk returns
the fitted value of a w̆nk-weighted ordered logistic re-
gression of u′ on u − s, and δ̂mk returns the fitted value of
a w̆nk-weighted ordered logistic regression of m′ on d
and m.12

7.5. Cost Function
Following Aguirregabiria andMira (2002), we estimate
type k’s cost parameters by iterating

θ̂
l
k � arg max

θ

∑
n∈n

∑
t∈t

w̆nk log
((
ψk(θ)ρ̂l

k
)(qnt | xnt))

and ρ̂l+1
k � ψk(θ̂l

k )̂ρl
k

Order quantity 0 24 48 72 120 240 744

Observation count 12,506 1,053 87 27 19 4 1
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to convergence, where ψk(θ) is the policy iteration op-
erator evaluated under structural parameters δ̂k and θ.

8. Structural Econometric Results
8.1. Structural Estimates
Figure 5 depicts the distribution of our cost parameter
estimates.We express all costs relative to the error term’s

SD, which we normalized to one; λ̂k, µ̂k, and η̂k have
means 3.83, 0.14, and 0.0030, respectively, and medians
3.48, 0.080, and 0.0019, respectively. These estimates are
significantly larger than zero, and therefore, ship-
ping costs, stock-out costs, and holding costs are all
relevant. We estimate that not satisfying a unit of de-
mand is roughly as costly as storing a unit of inventory

Figure 5. Cost Parameter Estimates

Notes. These line plots depict the distribution of our θ̂k � {λ̂k , µ̂k , η̂k} cost estimates relative to the variance of the error term, which we have
normalized to one. The curves are empirical cumulative distribution functions (CDFs), and the grey bands are their 99% confidence intervals
(calculated with the bootstrap). The dashed lines highlight the estimates’ quartiles.
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for 0.14/0.0030 � 47.7 days and that receiving a shipment
is roughly as costly as not satisfying 3.83/0.14 � 27.4
units of demand. This latter figure might seem high, but
the cost of stocking out is mitigated by the fact that most
products havemultiple close substitutes (e.g., themedian
store has eight types of toilet paper).

8.2. Counterfactual Analysis
To determine the causal effect of ration gaming, we
simulate the supply chain in its absence, speculating
how the stores would have ordered if they did not
strategically avoid upstream stock outs. We eliminate
ration gaming from the supply chain by concealing the
DC inventory level from the stores—the stores cannot
muster inventory runs if they cannot foresee upstream
shortages. Rather than condition on the DC’s inventory
level, the stores in our simulation believe that the DC’s
order fulfillment probability is fixed at the long-run
average fulfillment rate. For example, the DC fulfilled
1,647 of the 2,068 orders that it received for the 115mL
bottle of Li Jin brand sesame oil, and therefore, in our
counterfactual scenario, the stores presume that this
sesame oil has a constant fulfillment probability of
1,647/2,068 = 0.80.

We use our primitive estimates to solve the stores’
counterfactual optimal policies. We then use these
counterfactual optimal policies to simulate a counter-
factual sample of data. Additionally, we then use this
counterfactual sample to estimate the counterfactual
bullwhip effect without ration gaming.

Confirming the hypothesis of Lee et al. (1997a), we
find that ration gaming underlies a meaningful portion
of the bullwhip effect (Figure 6). Specifically, we estimate

that ration gaming increases the geometric mean of the
material flow bullwhip by 6.23% at the product level and
7.48% at the item level and increases the geometric mean
of the information flow bullwhip by 10.58% at the
product level and 19.4% at the item level. Ration gaming
affects the information flow bullwhip more than the
material flow bullwhip, because orders exceed ship-
ments when inventory is scarce. Additionally, ration
gaming affects the item-level bullwhips more than the
product-level bullwhips, because the inventory runs not
only make the store orders more variable but also, make
the store orders more correlated. The common inventory
signal coordinates the stores’ orders.

9. Conclusion
In this article, we do seven things.

1. We perform the first structural estimation of
a multiechelon supply chain.

2. Wedevelop thefirst (st,St) inventorymodel estimator
that factors both reorder point st and order-up-to level St.

3. We bridge the theoretical inventory management
literature and empirical dynamic discrete choice liter-
ature. We show that the dynamic discrete choice par-
adigm can accommodate such operational features as
order batch size constraints (Veinott 1965, Chen and
Zheng 1994), fixed ordering costs (Yang et al. 2014),
and Markov-modulated demand (Chen and Song
2001). We show that the paradigm can capture de-
tailed supply chain dynamics (e.g., our state transitions
depend on (i) the order from the store to the DC, (ii) the
shipment from the DC to the store, (iii) the current
period’s actual demand, (iv) the next period’s expected
demand, and (v) the DC’s inventory level).

Figure 6. Counterfactual Analysis

Notes. These box plots depict the medians, interquartile ranges, and interdecile ranges of the ratio of our actual bullwhip estimates to our
counterfactual bullwhip estimates. For example, we estimate that ration gaming increases 77% of the product-level information flow bullwhips
and 91% of the item-level information flow bullwhips.
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4. We show that, like a bank can suffer a run on cash,
a supply chain can suffer a run on inventory. This is
a new version of ration gaming. Whereas the gaming of
Lee et al. (1997a, p. 552) “is triggered only at an upswing
of demand,” our gaming is triggered by a dip in supply
(a low upstream inventory level). Additionally, whereas
their gaming stems from a conspiracy to deceive, our
gaming stems from an honest tragedy of the commons.

5. We conduct the first empirical study that estab-
lishes the existence of ration gaming. Our stores engage in
moderate inventory runs, ordering 31%more often when
the upstream inventory level is in the bottom decile.

6. We confirm the two-decades-old hypothesis of Lee
et al. (1997a) that ration gaming contributes to the
bullwhip effect. We estimate that inventory runs lead to
median increases of between 5.6% and 15.3% in our
bullwhip measures.

7. We show that supply chain visibility can be
harmful. The supply chain literature treats information
sharing as an unalloyed good (surveys are in Chen 2003
and Kumar and Pugazhendhi 2012). However, more
informed decisions are not necessarily better decisions:
managers can use information selfishly. This is what
we observed. The stores use the DC’s inventory in-
formation to pass the stock-out risk upstream. Fortu-
nately, there is a simple fix: inventory blinding.
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Endnotes
1Lee et al. (1997b) cite potential gaming for computer memory, but
they provide no empirical evidence; instead, they cite Li (1992), who
also provides no empirical evidence. Lee et al. (1997b) also explain
that there may have been gaming in Hewlett Packard’s and IBM’s
supply chains, but they are not sure, because (i) “HPmanagers could
not discern whether the orders genuinely reflected real market de-
mands or were simply phantom orders from resellers trying to get
better allocation product” and (ii) it was “unclear to IBM how much
of the increase in orders was genuine market demand and howmuch
was due to resellers placing phantom orders when IBM had to ration
the product.” Finally, Lee et al. (1997b) claim that telephone com-
panies gamed the supply of Motorola cell phones in 1994, but their
only evidence is an article from Kelly (1995), who only suggests
a possibility of gaming. Next, Armony and Plambeck (2005) allude to
gaming in Cisco’s supply chain, but their only evidence is an article from
Thurm (2001), whose only evidence is the following quote from Cisco’s
Chief Strategy Officer: “We knew there were multiple orders. We just
didn’t know the magnitude.” Lai (2005) sought ration gaming in
a Spanish supermarket but concluded that “gaming is unlikely to be
significant in this retail case.” Fransoo and Wouters (2000, p. 87) con-
cluded that “shortage gaming did occur and this was amajor problem” in
a supply chain that they studied, but they did not quantify or illustrate this
shortage gaming in any way, because they “encounter[ed] difficulties
in measuring this, in particular in filtering the effect of order batching
and shortage gaming.” Finally, Sterman and Dogan (2015, p. 19)
studied inventory hoarding with a laboratory experiment, but their

specification explicitly barred “shortage gaming (because there is no
horizontal competition).”
2The stores do not have an incentive to order more than they desire,
because only 1.2% of orders are partially fulfilled.
3The sequence in which the stores’ requests are fulfilled is irrelevant,
because every store manages to stock up toω during the inventory run.
4The online appendix outlines our sample selection procedure.
5We do not observe orders or shipments from October 23, 2011 to
December 31, 2012, because of a lost Excel file.
6To avoid double counting standing orders, we remove observations
in which the store ordered the previous day. However, including
those observations yields similar results.
7The rightward skew in the data confirms the theory of Chen et al.
(2016) that the material flow bullwhip generally exceeds the in-
formation flow bullwhip.
8The model of Hall and Rust (2000) is purely theoretical, and
therefore, we exclude it from the list.
9The shipping cost is not the total expense of deploying a truck from
the DC to the store, but rather, the incremental expense of receiving
an additional product when the truck arrives (Section 3.4).
10Weadd theminus sign, because (i) the storeminimizes costs instead
of maximizing profits and (ii) the Gumbel’s special properties cor-
respond to its right tail.
11We set k̄ � 2 for our primary analysis, but setting k̄ � 3 yields
similar results.
12Variable i′ seems probabilistic given d, i, and s, because it must be
rounded to a particular grid point; we assign probability mass to the
grid points via linear interpolation.
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